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tion Th geismic behavior of earth dams was analvzed taki

oT: e ) 4 aking into account the

28 mmictiun of the dam with the rﬁservoir as well as the effects of differential ground
int:;ns along its longitudinal axis. The hydrodynamic pressures exerted on dams with
got ing faces were employed to evaluate the added mass which was coupled with the shear

aw— slgpmtiﬂﬂ theory of the dam to obtain its natural frequencies and modes of vibration.
g;eoeffects of the amplitude and phase differences of the ground motion on the seismic

response ©

+he dam resP

f the dam Wwere studied by modelling the dam as a two dimensional shear beam
he seismic input, applied at the base of the dam, assumed various forms to
variations in amplitude and phase of the ground motion.

onse was not affected by the hydrodynamic pressures but it was sensitive

It was found that

vo the sssumed variations of ground motion along its base.

| INTRODUCTION

uring an earthquake, a dam moves into and
away from the water in the reservoir, in
sddition to its own lateral vibrations.
These motions generate hydrodynamic pres-—
sures on the upstream face of the dam, and
in turn, influence its deformation. It is
also expected that the ground excitation
at the foundation level of a long dam may
have spatial as well as time variations,
and such a differential motion may affect
the seismic response of the dam.
ef'::tfirst analysis of the reservoir
e t;ea;: a2 dam (Westergaard 1933) dealt
Vertica] ydrodynamic pressures on the
Upstream face of a rigid dam by

element method (Hall 1981), the frequency
dependent transfer functions of the hydro-

dynamic pressures on rigid and flexible
earth dams were presented under both hori-
zontal and vertical ground excitations.
Although the effects of the flexibility of
dams were introduced some twenty years ago
(Chopra 1967), most studies dealing with
earth dams have assumed that the dam is
rigid for the purpose of computing the
hydrodynamic effect, if calculated at all.
Recorded motions of earth dams during
past small to moderate earthquakes have
shown, in both the time and the frequency
domains, that a typical dam responds pri-
marily in what appears to be its fundamen-—
tal mode in the upstream—downstream direc—

eliciteqd rential equation. This paper
iteng fumerous discussions, the most tion (Abdel-Ghaffar 1978). This is mainly
°*Ing of which (Von Karman 1933) because of the large thickness of the dam

dealt yq
on the d:: o hyddeynamic forces exerted

Altho“gh uby the momentum balance method.

¥as mathematically simple,

Some gt
HW‘“I’ 29;3)’:“& analysis were not clear.

M of the offered a rational explana-
anapptﬂ'xi method and employed it to find

Mate expression for the pressure

ﬂphtma:’;:figid dam having a sloping
?' The exact values of the
ez:;"urea- on such a dam were
T *tim ‘*ormal mapping (Chwang
5 a,;i]g}ﬂ'"?Plication of the finite

321

relative to its height. The resistance to

the upstream—downstream motion is mainly

due to shear distortions, and hence, the

dominant displacement at all points within
the dam is assumed toO be in the horizontal
upstream—downstream direction. The rela-=
tive motions between points located along
a horizontal straight line passing through

the dam thickness are negligibly small. A
common procedure for the seismic analysis

of a typical dam is to assume that the
same ground motion acts simultaneously at



+ the average shear mody]
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action between an earth dam and itﬁl ar-

voir, and the effectS of the spatia o:se- where pgq 1s the mass density of ¢y,

{ations of ground notion on 1itsS resp This differential equation was ¢, € dap,
to a matrix equation (Haroun 1987§‘ni;0rmed

loying a finite element
IDERATION emp mesh of
2 SYSTEM UNDER CONS vertical plane of symmetry of the dthe_
shown in Figure 2. The resulting e?m as
gen~
dge of a base width B value problem was solved for th _
oy g g characteristics of the dam. € dynapi,

situated in a rectangular canyon of a
The sides of the

The dam under consideration is assumed tO

length L and a height H.

dam are inclined by an angle 0 (a slope of | | 2|

« to 2 - horizontal to vertical). A e T
coordinate system (x, y and z) was used as @

shown in Figure 1. The displacement of S A . S g SIS S G G |

the dam in the x-direction, due to shear
deformation, is denoted by u(y,z,t). ot biat

ly
Figu1:e 2. Finite element mesh of the
vertical plane of symmetry of the dam.

Figure 1. Dam ' 4 HYDRODYNAMIC PRESSURES ON DAMS WITH
geometry and coordinate SLOPING UPSTREAM FACE

3 FINI ::i(f:irst Step in the analysis of the sei?"
TE ELEMENT MoODEL OF T ¢ response of a dam-reservoir system 1°

HE DAM 0o calculate the hYdrOdynamic pressures

ie:erated in the fluid domain due to the
dZm;;ns lmposed at its boundaries: Fluid
8 usually have irregular boundarie®

Whereg
approach was § the two 4 of
ence of th necessary to gryug imensiona) £1 complicated geometries; however, the
the 4 “ diffel‘ential Y the infly- nite element h le and
oy response ground motion aCcuI‘ate pro det od offers a Simph om~
on cedure to deal with such ©

mens 1
ion theory zo:l:i-tiea. Moreover, if it is properly
ned with the boundary solution tec"

da tera
It 2e & M and jtg Ction
PPropri reser ni
Bi'ting B tingk. ate, for earth voir, que, it may even off efficien
cohesive marars. 208 con- Scheme for th S¥: 8 MORS iro"
'terialg, ¢4 dynamic pres szr:"mlzutation of t):he h;’a;s
8 (Haroun 1980) on

wit
th infinite reservoirs.




e nal functional which governs
m“t:awatef in the reservoir can be
0

| ed as
) t
A [2(_.9. [ (99.7$) dR
R Q
& ; [ )dt (3
: + P [(d’un)d ) )
! rd
nass density of water, % is
’ Jhere p is t::im r is the surface which
+he ter doeservoir, [4 18 the interface
nounds t:: :he reservoir and the dam, and
| ’ur?czhe velocity of the dam normal to
s
l:ge curface I3

. Pre Boundary
‘.. Elements

: Sukal
> 5

Figure 3. Domailn of the reservoilr

The finite element method can be used to
discretize the fluid domain. The main
sroblem, however, is that the domain Q is
infinite. If one divides it into a finite
irregular region near the face of the dam
(%) and an infinite regular region (29) ,
a8 shom in Figure 3, then equation 3 can

be 'r_itt.en in the form

t
e
g o0

! @, 2,

+ o[ (o Gn) dl‘) dt (4)

4

M tm 111 eqﬁation 4 will be hﬂnd].Ed by
"_@?ﬁ_?fﬂt procedure.
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identically satisfies the Laplace equation
in the infinite region, one can replace

the volume integral over the region 15 by
a surface integral. Applying Green's

theorem to the second term of equation 4

o)
5 J(6.9¢) a0 =2 [ 2% 4r = (4724 ag
Q on
2 [ 0
2 2
P d b
2 I¢ on I (3)
Fz

where F2 is the surface which bounds 92'

A solution for ¢ can be assumed in the
form

gy T

d(x,y,t) = I N (x,y) A, (t) (6)
i=1

where ﬁ.(g,y) are trial functions which
satisfylthe Laplace equation, 1 is the
number of trial functions and (x,y) is a
coordinate system with the origin on TI;.
By choosing the trial functions to satisfy
some of the boundary conditions on Pz, one
can reduce the number of elements on the
boundary. An appropriate set of trial
functions can be expressed as

L *Bix
N, (x,y) = e cos(Bi(H-y));

B.= (2i-1)7/2H (7)
i
where H is the height of water in the

reservoir (full reservoir).

Thus, the integral on the surface [y can
be reduced to one integral only on the
interface T; between the reg%on Q% ag% 2%.
Assuming the potential function ®(y,

[, is given, then equation 7/ implies that
i

1
d(y,t) = ) Ai(t) COS(Bi(H-y)) (8)

R LSRR cos (B, (B-y)) dy (9

With the aid of the definition of Ai(t),
equation 5 yields

t f the unknown
(v.L): Al terms O
ExPrtlss:i;lﬁe: zi’ the velocity potentiaier_
?oiztion and of the finite element 10 s
u

polation functions, one obtains
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N of
where {N} is the vectoi ¢
functions. Thus equatfzrm e
rewritten in a matriX

= T E. } (12)
_erf oo dl = “’ri} [Rl‘il{ ¥

2

r  and [Rp |
unknowns alofnig the surface ‘;> Fi

is defined as . - )
3
P g by HE L (1
R = i (1)
[ f} H {=1 §24)
where NEV
Al A (14)
and <
e 1 H
g =00 N B (H- —*(2&-1+ﬂ))] dn
(459} 2-1[ (N} cosB, (B-G e

in which H® is the height of an element,
NEV is the total number of elements along
[; and e is the element number.

The irregular part of the reservoir was
represented by a two dimensional finite
element model having both three and four
node elements (Figure 3). Each node is
assumed to have a one degree of freedom
(nodal value of the velocity potential
function). The first term in equation 4

leads, after straightforward calculations
to

= [ve.v8) do = § T
2 . = S0P IR i ] 'E
Ql Ql ﬂl Ql (16)

For a four node ele
ment, the matri =
can be put in the forp giiy

s
. = { LA
et B d:’Fcl Fd} (19,

2. } is the vector of unkngyp
2 g the dam—reservoir inters
vaIU?;F } is the force vector which,
and d is calculated for ty,

+his section, - Elaa. .
~eservoir interface was assumeq ,, he

dam~—

nodal
acej

in

3 t) = é(t) sin 6
The elemental force vector is €XPresseq

rerms of the shape functions as 1

1
© chired ds
e _ :
{f} = pG _{ {N(ﬂ)} dn Sinb dn (21)
where s is an axis orlented along t}
reservoir interface. Performing the

integration, one obtains
e e 0
o e I, St
f1 9 o G(t) (22)

e dam‘

b. The velocity of a flexible dap e
its interface with the reservoir wasg g
assumed in the form

/

un(y,t) = G(t) sintg%) sin6 (23)

Substituting Gn(y,t) into equation 19, the
elemental force vector can be calculauxf-
(Abdel-Hafiz 1986).

The global force vector is assembled as
follows

F} = = {£}° (24)
e=]
After substituting equations 12, 16 and 19

into equation 4, the extremization of the

variational functional yields the
following matrix equation

g 2R R 4
% R1 i Beoe T [R] {¢} = {F} (25)
3 € 2R R
: Ry W HL L % 1 ¥ iR wh
1 iz F-R R : (17) €re the matrix [R] includes the contri-
1 3 2R R butions of
R -R : 2 Fints Of the boundary elements and the
3 1 R2 2R1 bk E elements, {‘i’} represents the vector
8 I 0Wn nodal values of the velocity
oy, 5 5 — e forjztlal function and {F} is the nodal
(18a) Vector. Numerical solution of




| face were computed and compared to the
——— Analytical €Xact solution (Chwang 1978).

: It is clear
Numerical

from Figure 4 that the numerical solution
adopted herein is reliable and can be used
Lo predict the pressures on rigid sloping
dams with sufficient accuracy. Figure 5
displays the pressure distribution, as
calculated from the numerical solution, on
a flexible dam for which the deflection
was assumed as a sine curve. The exact
solution for a dam with a vertical up-

90 Stream face is also shown for comparison.

5> DAM-RESERVOIR INTERACTION

In the following analysis, a method is
developed to make use of the hydrodynamic
pressure expressions derived earlier for
the derivation of an added mass matrix.

¥ 1% 0.2 0.4 0.6 0.8 5.1 Hydrodynamic Pressures
"~ PRESSURE COEFFICIENT

The hydrodynamic pressures calculated
according to equation 25 represent the

rigure 4. Bydrodynamic pressure distribution pressures at the different nodes of the

h-& rigid dam. region @, including those on the dam-
reservoir interface. An equation, similar
to equation 25, can be also written for
the pressures but in a partitioned form as

CIERCIR R [1F30) N [E781 I
e it v a g L a o 13
1.0& : e
| ——= Analytical L% [Rn] {pn} &

Numerical i '
where {q} is the nodal acceleration vector

of the dam. The subscripts i and n denote
interface and non—-interface nodes, respec-
tively, whereas the subscript c refers to

the coupling between interface and non-

interface nodes.
From equation 26, the equation for the

6=90 interface nodes is written as

¥ .
Rptingd 4R, 1adpgdomadByling o o312

whereas the equation of the non-interface
nodes is given by

(R _1{p, } + (R 1{p } = [ ] {al (28)

Equation 28 can be solved for the pressure

at the non-interface nodes, and upon the
substitution in equation 27, one obtains

the pressure at the interface nodes
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"If one defines . o i (30a)
b s it B
[ eff i ¢ Py )
i b N
ISEff] i ; face nodes
then the pressure at the interl
can be expressed as ; L
. L] (
{pil g ['eff eff : -
pression or
i (31) of fers an €X
fj::; :zss [AM ] which 18 defined bY
4 (32)
(AM] = [Reff] [seff]

calculated earlier in
natrix [S] can be also
he finite element model
d for a four node

ed as

The matrix [R] was
gection 4.2. The
evaluated using t

of the reservoir, an
element, it can be express

4 2 1 2
e e 1

e ML 312 4 . (33)
s e v L NS
2 1 2 4

The order of the added mass matrix is
NixNi where Ni is the number of interface

nodes excluding the free surface node.

5.2 Illustrative Examples

The method of computation outlined above
was used to compute the dynamic characte-
ristics of an earth dam of a height 160

feet, an average shear wave velocity of

1000 ft/sec and a mass density of
4-03 lb-BeCZ/ftan :

The dam was modelled

as a
shesr beas. one dimension

Such a representation was

some of these

the effect of

Fundamental frequencies ¢ q
d by frequency of reseroir;”m

30
/ﬁ \
Full -319 -J316 15311 -:“Ia '288 -19%
7 Dif-
ference 193 1-86 L B 42 5-90 10 6 38 5

types of dams. It is noted that the
effect of the dam—-reservoir intEractLJ
the dynamic characteristics of earth g4
is minor especially for the realistie
values of 0 of earth dams. For relatiye
larger values of 0, as for rockfil) e y
the frequencies were slightly affect&dté
the hydrodynamic pressure. It is 31g,
noted that the hydrodynamic Pressures haye
significant effects on the dynamic charg,-
teristics of dams with vertical upstregp
face such as concrete gravity dams.
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e P b {qs} and {q_ | are the vectors of
1- JI'." % 1- « oy I A 1 Ed Bup G t di 5 P 1 acements and
g . | CCelerations, respectivel d { *
that the intensity of . ; A Ans
erved Y and {qns} are the vectors of non-support

g8 gwund shaking attenu:tEB with displacements and accelerations. The
§ T e fros the causative fault more subscripts s and ns denote support and
F 9P alet igh frequency range than non=support nodes whereas the subscript c
ncy range. Consequently, 1s used for the matrices which represent
from the fault, dams the coupling effects between the support
i S riods of vibrations may and non-support nodes. gt
| S b 5 stronger shaking than other The displacement vector of the non-
| naving shorter periods such as Support nodes can be considered as the sum
O ctures 10 gs. It is also known that  of two vectors
; ”:uqith extended lengths may be

S uctur®s o rential movements caused s |- & -
aaged b:]'gdif Hence, spatially e {qi} {qd} e
t ;eis-ic motions may largely affect where {‘11} is a pseudo-static displacement

of long dams . and {qd is the dynamic displacement.
rmulation handles any With the aid of equation 37, equation 36

ijations of the input leads to the governing equation for non-
pI'OblEm remains support nodes as

propriate variations

It is not the

M 1o b+ M 1o b+ e, b+ % 1a]

Il

0% L | # (k__1{q,} = {o} (38)

The displacement vector {qi} is defined as
a vector which corresponds to no internal

strain energy in the dam if it is acted
upon by a "static" support displacement of

.'j;- + Equation of Motion
uh:ﬂx Eq magnitude {qgg}. This definition implies

A f dams, as
The linear earthquake response O ; :
gany other structures, is governed by the [Kc] {qB} + [KnB] lq i} {0}

ian.dng fapiliar matrix equation of

!!1 EH ] {q} + K] {q} = {F} (35) {qi} - ~fK__] [Kc]{qs} (40)

ation

(39)

Mm{l] is the mass matrix which may Substitution of equation 40 into equ

aclude the hydrodynamic effects, [C] and 38 yields
(K] are the damping and stiffness { b+ (K 1 |

matrices, respectively, and {F} is the [Mnsl 14 ns = d A
external nodal force vector. The solution ik 4 | ]-l[l( ]] (q | a1)
2 ‘fm 35 was obtained in the time g - c ns ns ¢
m‘ﬁu modal superposition; such 2
%ethod was effective in dealing with both
"iiorm and differential ground motions. | }
%€ undamped equation of motion was o S ey
- Martitioned into two coupled sets of [Mna]{qd} L {qdl eff
'. T:::z:ib:l:d::;izzeif ive ehe of fective force vector [Fe £f
_e?fiﬁﬁ%%ééiféiif*ihi'ineond represented all PR
| gy Mn-support nodes. The partitioned

which can be written more conveniently in

the familiar form

(43)
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Thus, equation ents ¢ s
2:;;1::: of motion of the non-support

ffective mass matrix is

ri [xt]] (44)
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nodes. o
dependent on the€ _
at each of the support no

6.2 Effective Force Vector

effe
- ch of the SUPport

d as shown

To investigate C

in Figure 7. .
a. Travelling Waves:

was selected in the form S
which represents

In this case, the ground motion at any two
nodal points of an element along the base

of the dam can be expressed as
T

gaEt, -
{qs} = {ql, q2} (46)
where qz(t) = qf[zﬂ(t-Le/c)/k) (47)

in which L° is the separation distance
between the two nodes, i.e., the length of
the element.

?. Time-delayed Earthquake Motion: In
this case, the ground motion at any two

nodal_points of an element along the base
was given by equation 46 but

Traveling waye

-t of a time la8 of

Propagation Speeds and t
travellin

conducted.

-, e & .e TE;-'
e — '
qz(t44nﬂ) ql(t) Bin. %

-~

At is an assumed time 1,4 of

in which th ?

earthquake record- . }
It ShOuld be nOt.Ed that thE grOUnd

acceleration vector, in contrary t, the

-ase of uniform ground motion, is p,
longer praportional to a SPECifiC"ﬁime
dependent function. The vector [qs}
be computed at each time step. §y.p
excites both the symmetric and a8 ymme
modes of the dame.

Following the standard steps ip |, i
node analysis, and employing the Drthgmmu
nality conditions, one can reduce theéﬁh
and the stiffness matrices to diagonafmms
forms. In a standard analysis, the
generalized load is proportiona] ¢, th
amplitude of the ground acceleratigqp €

constant modal participation factor.
is not true for the type of €Xcitatign
described herein where the generalizeg
load has to be computed at each time stq,

L0py
triQ

b?51

Thi

6.3 Illustrative Examples

A computer program was developed to inveg-
tigate the effects of amplitude ang phWE
difference of the ground motion on th;
dynamic response of dams having'diffenyw
length to height ratios. The propertﬁéL
of the dam were chosen as those given*
earlier whereas the shear modulus was
assumed to vary in Proportion to the cuybie
root of the depth measured from the dmnlh
crest. It should be noted that the ratio
L/H in the following examples reflectsdr
Primarily the value of the dam length
Since the height of the dam was taken
constant at 160 feet. A viscous damping
ratio in the dam body was assumed to be 5
Peicent of the critical damping. ﬂ
Parametric Study of the effects of the

he periods of
€ Waves on the response was

dSe

Ylelding a wide range for

The limiting case for
farht!:n in the figure. It was
Z the same L/H ratio, the

° appreciably affected by
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considerably if the wave period is equal
to or near the fundamental period of the

dam.
The component of the 1940 El Centro

sarthquake was applied at the base of the
dam with a time shift of 0.02 seconds-.
Figure 9 shows the time history of the
displacement at node number 21 for a value
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plotlzf ta Wwhereas Figure 10 presents a

aid o ihe s € maximum response at nodes 11

earthquair uniform and time-delayed

e € motions versus L/H ratio. It

it ar in'this case that the response
O a uniform excitation exceeds the

res
ponse due to a phased ground motion.
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Figure 10. Maximum displacement due to &
time-delayed excitation.

7 CONCLUSIONS

The seismic behavior of earth dams was
analyzed taking into account the i?ter—
action of the dam with the reservolr as
well as the effects ©
motions along 1ts longitudinal axis. 1t
was found that the dam response was not

affected by the hydro
it was sensitive t

of ground motion along 1its base .
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